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The problem of perturbation of the equilibrium state of a capillary fluid is con- 

sidered for small variations of physical parameters. Consideration is primarily 

given to perturbations of a stable spherical surface by a weak gravitational field 

(the axisymmetric case) and, also, to the three-dimensional problems of pertur- 

bation of a free surface which represents part of a horizontal plane (for varying 
wetting angle). In the latter case the perturbed surface of fluid comprised in a 

dihedral angle between two semi-infinite vertical planes and contained in cylin- 

ders of rectangular and triangular cross sections is determined. 

1, Formulrtlon of problem, Let I? be the free surface of a capillary fluid 
in a container and y be the line of fluid contact with the latter. The following condi- 

tions must be satisfied in the equilibrium state (see, e. g. Cl]): 

kr + Ica = 5-l fl + C on I?, n.n,=cosa on 7, s dL2=v 
61 

where & and k, are the radii of principal curvature of surface I’, o is the coefficient 

of surface tension, fl is the volume density of the fluid potential energy (assumed to 

be a known function of coordinates), c is an a pr i or i unknown constant, n and n, 

are unit vectors of normal to surface I? and to the container surface, respectively (see 

Fig. l), cc is the angle of wetting, Q is the part of space occupaied by the fluid, and 
v is the fluid volume. 

Let us assume that for certain specific H (x), cc and u the stable 
surface I? (hence also the constant c) is known. The problem is to 
define perturbations of the steady surface induced by specified small 
increments HI (x), 6a and 6v. 

Y We assume that every point x E r is subjected to a small dis- 
placement 6x = h (x) to which corresponds deviation N = h .n 
along the normal. By varying the defined above equilibrium condi- 
tions. as in [ 11, we obtain for the deviation of N the following prob- 

- lem: *N - UN = O-~&XI + 6c on r (1.1) 

Fig. 1 ~N+$=-66a on 7, s Ndl?= 6v (1.2) 
I' 

a= &l!L - k12 - k22, k cos a - kc, 
&a 

xz 
sin a (1.3) 

where A is the Laplace-Beltrami operator on J?, k and k, are curvaturesof cross sec- 
tions of I? and of the container,respectively, by a plane normal to y (the orientation 
of these cross sections is shown in Fig. l), and v is the outward normal to y in the plane 
normal to r. 
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The problem (1.1). (1.2) in N and Bc is of the Fredholm kind. In what follows we 
assume that the problem has a unique solution for any Hl, &a and 6~ (i. e, the related 

homogeneo~ problem does not have nontrivial solutions). This implies that the initially 
stable surface r is not critical in the sense of stability and that perturbations do not lead 
to the branching of equilibrium states. 

Note that Newton’s method for the determination of the stable surface of a capillary 

fluid for specified physical parameters reduces to the sulition of problem (1, I), (1.2). 

2, Petturbrtionr of rxtrymmotrfc rnd plane equfllbtium #tatas, 
Let the container, the initial surface I? , and potential II be symmetric about the z - 
axis, and T, 8 and z be the related cylindrical coordinates. It is convenient to take 

the length of arc s of the intersection of surface r with the half-plane 8=const and 

angle 8 for curvilinear coordinates on J? Then for N = N (s, 0) problem (1. l), (1.2) 

assumes the form i a aN 

( 1 + 
1 asN --_-- _-- 

r as 8s + aes 
UN = 06rI + 6c 

( x~-~)l,=o=-h (XNf$)I = -&x 
s= 8, 

where r (s) and a (a) are known functions. The solution of N (a, (3) is readily derived 
in the form of trigonometric series in 8. Barniak had obtained Green’s function for this 

problem ( * ) l 
If 611 is independent of 0 the problem for N = N (s) is simplified 

N”++- aN = 3TKI + tic (2.1) 

(xN - N’) fsx,, = - 6a, (XIV + N’) fszS,= - 6a, 2~ i rNds = 6v (2.2) 

Note that for positive r (0) and I^ (aI) the conditions at the initial point s = 0 and 

the end points s =I s, of surface I’ generatrix must be satisfied. If. however, point 
a = 0 or s = si lies on the axis of rotation, the corresponding boundary condition 

must be replaced by the condition of boundedness of function N (a). 

For a plane problem (on obvious assumptions) instead of (2.1) and (2.2) we have 

M” - ail ~ o-WI + 6c 

where s is the length of arc of cross section of I? . 
Let us pass to the solution of some specific problems, 

*) Barniak, M. Ia., Approximate methods for solving problems of statics and dy- 
namics of fluid in containers under conditions of near-weightlessness. Candidate‘s dis- 
sertation, Kiev, 1971. 



Small perturbations of a stable surface of’ capillary fluid 667 

3, Strbla rurfrcs~ for rmrll Bond numbrrr. Let usdetermine the 
shape of a simply-connected axisymmetric surface of fluid in a homogeneous gravita- 
tional field of intensity qg acting in the direction of the z-axis, at small Bond numbers 

B == p~gL%-’ (p is the density of fluid, g is the acceleration of gravity. q is the 
overload coefficient, and I is a characteristic linear dimension). The unknown surface 

is close to a spherical one, obtainable for the same a and u under conditions of weight- 

lessness (IT L= 0). We take this sphere as the unperturbed surface I’ , and assume that 
its position in the container and radius R are known (see, e. g. [ 21). We direct the z - 
axis from the liquid to gas and locate the coordinate origin at the point of intersection 

of that axis with I?. By selecting & as the characteristic linear dimension (here R is 

assumed finite ; the case of R = co and the sphere degenerates into a plane is consi- 

dered in Sect. 4)‘ problem (2. l), (2.2) in dimensionless form is defined by 

N”+ctgsN’+2N=fB(1-coss)+6c 
(3.1) 

(XN + N’) lbxll = 0, ( N sin sds = 0, x = rfi co~&ko (3.2) 
0 

In these equations the sign plus or minus depends on whether the coordinate z of the 

sphere center is positive or negative. 

The general finite solution of Eq_ (3.1) is of the form 

N = Cl cos s --& B P/, + ii, cos s In (1 + cos s)] + V& 

where constants Cl and 6c are determined by conditions (3.2). Solution of the consider- 

ed problem was derived in [3]. 

By selecting as the unperturbed surface the circular cyclinder 

5 = R sin (s i R), z = rt R U - cos (s / R)] 

in a similar plane problem we obtain in dimensionless coordinates 

iV = Cl sin S + C2 COs S + 6C _C B (1 - ii2 s sin 8) 

where R is a characterisiic dimension. 

4, Surface of rmrll 8lope. Surfaces of the form Z=const satisfy in a gra- 
vitational field of any intensity the equation of equilibrium. Let us assume that the 

plane z = 0 is the eq~librium surface in some container for a = a0 , We have to 
determine the perturbation induced by the given variation 6a of the wetting angle. 
Then 

1V = 2, a = pr)g~7-~ sz 6, X = - k, / sin cCO, Sn = 62: = 0 

In the axisymmetric case r (s) 3 s and the general solution of Eq. (2.1) is 

z = c1 + cs In r + ‘/s SC for b = 0 

~=c,l~(Y’ar)+caKo(l/~r)--c/bffol b>O 

z=c~J,(~/i~/+c~Nof~/tb)-~c/b for b<O 

where J, (t) and f, (~1 are Bessel functions of a real and imaginary argument of zero 
order, and I(, (z) and Ne (~1 are Macdonald and Neuman functions. 

Since in the plane problem s z z and N = z(z) , hence 
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z = cl + c2s + ‘I2 s2 6c, b = 0 

z = clev” + c2c-= - &c / b, b > 0 

z=c,sin(If~3$+ c2cos(1/~+--&~fI’b, b<O 

The related problems for a fluid contained in a circular cylinder and, also, between 
parallel vertical plates were solved in [Z]. 

Fig. 2 Fig. 3 

If b > 0 and the fluid is contained within the dihedral angle 9 formed by two 
semi-infinite vertical plates, then in the unperturbed state a = rt / 2 and at the free 
surface 2 = 0. 

We superpose the z-axis with the edge af the dihedral angle and locate the z - and 
y-axes as shown in Fig. 2. In the cylindrical system of coordinates r, 8, z we read 
angle 8 from the half-plane zz. 

Owing to the linearity of the problem it is sufficient to consider the case in which 
6~ = - 1. Since I’ is unbounded, we reject in (1.2) the second condition. and sti- 
pulate that the solution must tend to zero with infinite recession from the plates ; con- 
sequently in Eq. (1.1) we have 6c = 0. Taking the above into consideration and sub- 
stinting 2 for N , we obtain the boundary value problem 

AZ - bz==O on I?, d2 I av = 1 on y. (4.1) 

Behavior of the fluid surface close to the edge, Asymptotics 
of low gravitation. Before analyzing the solution of problem (4. l), we point Out 
that theheightof fluid at the dihedral angle edge N IrGo can be readily determined by 
using Green’s formula 

Setting s 
(VLU - u~v)dr = i(p g--- ~+~cQ. Lu=Au.---a 

T 

u=z(r), &f =I, u==K,()ibjr-r’\) 
avy 

where K, (VZ ( r - r’ 1) is the Macdonald function which is the functional solution 
for the equation Lu = 0 , we obtain 

(l’z(r) =~ $[&(@lr--‘I)-- (pf)~Ko(l/l,ir--r’I)]d~, r’E7 

whereo=2xY&r r~I’,o=n. for rEy(r#O)and o=@forr=O. 
For T = 0 we have a& / $v IY = 0 , hence the height of fluid lift at the dihedral 
angle edge 1s Eo 

(4.2) 
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Note that it is possible in problem (4.1) to obtain b = 4 (by a~umpt~on b,> 0) 
by passing to dimensionless variables X’ = r&r, y’ = v&y and 2’ = 0% With 
these we determine the asymptotic behavior of the solution of problem (4.1) for small 
l/cb T. Expanding function z’ (x’, y’) into a Taylor series, then reverting to variables 
X, y, z and taking into account (4.2). we obtain 

2 (2, y;b) = -& -I- $2 + C‘z!/ + 0 (JGr”), 2 (P, 8; b) = 

jG$ 
-I- @I cm 8 f c2 sin 8) r + O(JG.&) 

where the constants cl and cs are i~de~ndent of b and are determined by the boundary 
condition I% / 8~ 1~ = 1 

Mi(-f$)/ = - cs, 
8-O 

-c,sing+c,cosg, cl= - ctg-$- 

This formula defines the asymptotics of the whole surface of fluid for b -+ + 0, as 
well as its behavior in the vicinity of the dihedral angle edge for any finite b > 0. 

In what follows we assume b -= 1 and omit the prime at variables. Thus we have to 
consider the boundary value problem 

AZ - z = 0 on r, ~21~ = 1 on y (4.3) 

Angles 9 = rt 1’ n and other. particular cases. Function 

C-X = e-r cos 0 
, 

e-y = e-r sin 8, e--T C0S (0-S) -_ e-(x 00s Sty sin S) (4.4) 

where 6 is an arbitrary constant, evidently satisfies the equation of problem (4.3). and, 
if$-=:Jt, Z=fj-~=e-rsinR is the solution of the boundary value problem (4.3), 
i.e. the zz-plane is the wall (Fig, 3). 

If tp = rr I 2, then 

For a cylindrical container of ~c~ngular cross section with vertexes at fa, and 

*%I z = ch x I sh a, + thy I sh a, 

Function of the form (4.4) can be used for deriving solutions of other problems by 
applying the method of reflection. Thus for a dihedral angle ‘UI, = s / n (n = 1,2, 
3, . . .> the solution of problem (4.3) is given by formula 

n-1 

z=~Oexp[-rsin(e+~)] (4.5) 

which is easily verified by direct substitution into (4.3). For a cylinder whose cross sec- 
tion is an equilateral triangle of height H, and with the coordinate origin within its 
perimeter 6 

z zzz (1 - ,-H)-l Z exp (%f i- Pi!/ - Pi) 
+X1 
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where six i_ pig - pi = 0 (at + pi" I 1, pi > 0 and i == 1,2, . . . . fj) 
are equations of the triangle sides and ofstraight lines passing through its vertexes and 
parallel to the sides. 

Solution for arbitrary angles 0 <$ < 2~. Passing to polar coordinates 

r”, O(O\<r< M, o<e,<gj we reduce problem (4.3) to the form 

The derived above results show that for + = n I’ n the basic qualitative properties 

of the sought solution is the exponential decrease along radial half-lines (except bound- 
ary half-lines 8 = 0 and 0 = q) for considerable J- , and the symmetry with respect 

to the half-plane 8 = I$ / 2. These properties are possesed, for instance, by the follow- 

ing particular solutions of equations of problem (4.6): 

z = ch [‘G (e - 4 / 2)3 KiS (r) 

where z > 0 is an arbitrary constant and Ki, (r) is the Macdonald function, 

We seek z (r, 0) in the form of integral 

z (r, 0) = 1 cp (a) ch 11: (0 - Q/2)1 KU (r) & (4.7) 
0 

This ensntes that the equation of problem (4.6) is satisfied. We select function CC’ (7) 
so as to have one of the boundary conditions satisfied (the second will be satisfied owing 

to symmetry). The substitution of formula (4.7) into the boundary condition for 8 := 21, 

yields m 

* 
I 

(p (z) z sh 
( ) 
+J- &, (r) dz = r (4.8) 

0 

For determining from this the function C# (r) it is expedient to use the Kontorovich- 

Lebedev integral transformation (41 

The equalfty (4.8) can be made identical to the second of formulas (4,9) by setting 

f (r) = r, F (z) = cp (+sh(@ /’ 2) 

Then, using the first of formulas (4.9). we obtain 

Hence the solution of the problem considered here is of the form 
m 

z(r,e)=$S A, (r, 9,e) Kiz (r) & (4.10) 

A,(% 9,Q) 1 sh(3tr/Z)chf~(@-- ~/2)]/$h(~~~2) 

where the integral in the right-hand part converges only for 0 < 0 < 9, since for 
7--+00 
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At the y-boundary the values of function z (r, 0) and of its normal derivative can 

be obtained by passing to limits 0 --f 0 or 8+ $ only after integration with respect 

to z. For 0 < I# < n this can be avoided by setting 

z (r, 0) = e-r sin 0 + e-r sin+0) + u (r, 0) 

Applying to u (r, 0) the procedure used for determining function z (r, f3), we obtain 

u (r, e) = $ i R, (z, 9, e) KiT (r) a~ 
0 

L(r,$,Q = sh[~(~/2--)1ch[2(8--/2)1/sh(~~/2) 

From this for the height of fluid surface lift at the solid wall we obtain 

z(r,O)=z(r,$)=i+e-rsinJ, +-+$L(a40)Kir(r)a~ 
0 

Finally, taking into accout that for considerable r 

we determine the behavior of the fluid surface along straight lines parallel to the solid 

walls : lim 2 (5, y) = e-y which means that at some distance from the coordinate 
Tim 

origin the fluid surface near to each of the solid walls behaves as for $ =:: n. 

Let us show how formula (4.10) can be transformed into (4.5) when I# = rt i n. 
To do this we note that [5] n-1 

Taking into account that for 0 < 8 < 9, and 0 < k \( n _ 1 we have ( p 1 = 

1 8 -i- kn / n - rc / 2 I< x / 2 and that in this case p] 
co 

I 
ch (Pz) Ki+ (r) dz = __g e-7 cos B 

IJ 
we obtain the requisite result 

n-1 m 

,,r,e)=~r,jch[,(e+$-;)]Ki,(r)dT=~’~=~[-rrsin(e+P)1 
k=oO k-0 

In concluding we point out the case when the solution of poblem (4.3) can be ob- 

tained in the form of a sum of series. This happens when I? represents the sector 0 < 
8 < I#, 0 < r < ro. We can then write 

co 

z = - ( ctg +coae+ ain8 
) 

r + z u,(r)cos 
-0 

[$ye-+)] 

For functions u, (r) we obtain equations with boundary conditions 



672 A.D.Myshkis, L.A.Slobozhanin and A.D.Tiuptsov 

A, = 2 / 4, AR = (-1)‘c+1 9 i (16%” - 9” i 4), k > I 

where A, are specified coefficients of expansion of function ctg (9 I 2) cos 8 + 
sin 0. 

r”rom this we obtain for U, (r) formulas in terms of cylindrical functions, 
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The solution of the problem in the title is given in quadrature% 
When angular points (for example, a pile with a conucal tip) are present at the 

section occupied by the pile, tensile stresses are possible near its endpoint if it is 
assumed that adhesion without friction holds on this section. Otherwise cracks 
must be taken into account, It has been established that the stresses on the boun- 
dary of an axisymmetric pile differ from the corresponding stresses in the plane 
problem of wedging. Especially simple formulas are obtained in the problem of 
penetration of semi-infinite pile into an elastic space. 

1, Plane problem, The solution of the plane problem of wedging by a thin, 
rigid, smooth wedge along the ox -axis of an elastic half-space is given in [ 11. Let us 
indicate the results referred here by starting from the representation of resolution as [ 23 


